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We use a quantitative phase-field approach to study directional solidification in various three-dimensional
geometries for realistic parameters of a transparent binary alloy. The geometries are designed to study the
steady-state growth of spatially extended hexagonal arrays, linear arrays in thin samples, and axisymmetric
shapes constrained in a tube. As a basis to address issues of dynamical pattern selection, the phase-field
simulations are specifically geared to identify ranges of primary spacings for the formation of the classically
observed “fingers” �deep cells� with blunt tips and “needles” with parabolic tips. Three distinct growth regimes
are identified that include a low-velocity regime with only fingers forming, a second intermediate-velocity
regime characterized by coexistence of fingers and needles that exist on separate branches of steady-state
growth solutions for small and large spacings, respectively, and a third high-velocity regime where those two
branches merge into a single one. Along the latter, the growth shape changes continuously from fingerlike to
needlelike with increasing spacing. These regimes are strongly influenced by crystalline anisotropy with the
third regime extending to lower velocity for larger anisotropy. Remarkably, however, steady-state shapes and
tip undercoolings are only weakly dependent on the growth geometry. Those results are used to test existing
theories of directional finger growth as well as to interpret the hysteretic nature of the cell-to-dendrite
transition.
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I. INTRODUCTION

The directional solidification of dilute binary alloys can
produce a large variety of complex interfacial patterns. This
phenomenon has been extensively studied both because of its
metallurgical importance �1,2� and because it can be used as
a model system for fundamental studies of pattern formation
in spatially extended systems. In the typical small growth
rate regime probed experimentally, the solid-liquid interface
is to a good approximation in local thermodynamic equilib-
rium. In this regime, the emergence of cellular or dendritic
array patterns results primarily from the interplay of a mor-
phological instability driven by the diffusive transport of sol-
ute and the stabilizing effect of surface tension.

After the planar solid-liquid interface becomes unstable
above a critical pulling speed vc, typically observed direc-
tional solidification patterns include cells �round, fingerlike
shapes� and dendrites �needle crystals decorated with side-
branches�. A particularly suitable tool to investigate the se-
lection of these patterns are experiments conducted in thin
samples using transparent organic alloys, since they allow
for a direct in situ visualization of the interface shape by
optical microscopy �3–15�. In addition to cells and dendrites,
other morphologies can exist in thin samples. Examples in-
clude doublets consisting of two asymmetric fingers
�5,6,8,11�, disordered seaweed structures �6�, and cells ex-
hibiting regular oscillating patterns �8,13�. The orientation of
the crystallographic axes of the growing solid �with respect
to both the temperature gradient and the glass plates which

limit the sample� has been found experimentally to be a main
factor controlling the selection of these patterns �6,13�. Thus
the anisotropy of the solid-liquid interfacial energy plays a
crucial role in pattern selection.

An advantage of a thin-sample geometry is that it facili-
tates a comparison to two-dimensional theories and numeri-
cal calculations, which are in part justified by the fact that
the solutal diffusion length is typically much larger than the
sample thickness. As a result, major progress has been ac-
complished using two-dimensional models �16–25�. The tip
shape, however, remains three-dimensional even in a thin-
sample geometry so that the comparison of two-dimensional
models and thin-sample experiments is at best qualitative. A
quantitative comparison between computations and experi-
ments generally requires fully three-dimensional computa-
tions. Since the numerical treatment in three dimensions is
considerably more difficult, only a few attempts have been
made so far to tackle this problem �26–31�. One of the most
exhaustive numerical studies to date by Hunt and Lu �28�
was carried out using a sharp-interface model and the model
predictions were compared to experiments, with good overall
agreement. Limitations of this study, however, are that it was
carried out for an axisymmetric shape that is independent of
the azimuthal angle in a plane perpendicular to the growth
direction and that it did not investigate systematically the
role of the magnitude of crystalline anisotropy.

Rapid advances in phase-field modeling now make it pos-
sible to carry out efficiently and quantitatively numerical
simulations of three-dimensional interfacial patterns �29–35�.
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Here, we use a recent model for the solidification of dilute
binary alloys �36,37� to perform quantitative three-
dimensional simulations of a transparent succinonitrile
�SCN�-salol dilute binary-alloy system. We use this model to
carry out a detailed investigation of steady-state growth
shapes and tip temperatures as a function of growth rate,
sample geometry, crystalline anisotropy, and also composi-
tion, and we compare some of the results to previous experi-
mental data �15�. We carry out simulations in two dimen-
sions and various three-dimensional geometries including
thin samples of varying thickness, a regular hexagonal array
of cells mimicking the pattern formation in a spatially ex-
tended three-dimensional system, and growth of an axisym-
metric shape as an approximation of the growth of a cell in a
regular three-dimensional hexagonal array �28�.

The simulations are designed to address two long-
standing issues in directional solidification. The first is the
nature of the cell-to-dendrite transition. The second is the
determination of the cell tip temperature. Experimentally, ar-
rays of deep cells typically form over a finite range of ve-
locities above vc and dendritic arrays form for larger veloci-
ties. The transition from cells to dendrites has been observed
in some experiments to be discontinuous and accompanied
by a jump in primary spacing �3,4,15�. This jump in spacing
appears to result from a first-order hysteretic transition with
different steady-state branches of solutions for cells and den-
drites, as found numerically by Hunt and Lu �28�. In other
experiments, however, which exploited the ability to control
the primary spacing, the cell-to-dendrite transition has been
observed to be continuous �9�. As the primary spacing was
increased at fixed velocity, finger-shaped deep cells with
blunt tips became progressively more needlelike and devel-
oped sidebranches of progressively larger amplitude �9�.
These observations suggest that the cell-to-dendrite transi-
tion can be discontinuous or continuous depending on the
alloy system and growth conditions. However, the condition
for the occurrence of either of those scenarios is unclear.

Understanding the mechanism of this transition is impor-
tant from a fundamental standpoint since morphology selec-
tion has been a central issue in studies of pattern formation in
spatially extended nonequilibrium systems. It is also impor-
tant from a technological viewpoint since the primary spac-
ing is one of the key parameters that control the mechanical
properties of cast products. In particular, the tensile strength
of a structural alloy is typically inversely proportional to this
spacing. Cells and dendrites also produce very different mi-
crosegregation patterns �i.e., spatial distributions of solute
atoms in the solidified material� that can influence other pro-
cesses, such as porosity formation driven by solidification
shrinkage during the late stages of solidification or the sub-
sequent precipitation of new phases in the solid state.

To address this issue, we investigate here in detail the
underlying branches of steady-state growth solutions corre-
sponding to cellular and dendritic arrays. It is useful at this
point to comment on the distinction between cells and den-
drites. A simple criterion that is often used to distinguish
between these two types of structures is that cells have
smooth shapes while dendrites have sidebranches. For un-
constrained dendrite growth along crystal axes �equiaxed
growth�, it is by now widely accepted that sidebranches arise

as a consequence of the amplification of thermal fluctuations
�38–41�. In the case where the cell-to-dendrite transition is
discontinuous, however, the existence of different branches
of steady-state growth solutions for the two types of struc-
tures makes it in principle possible to distinguish between
them without reference to sidebranches. In the case where
the transition is continuous, as in Ref. �9�, the distinction is
essentially arbitrary for intermediary spacings since the in-
terface shape evolves continuously from cell-like to needle-
like and the amplitude of sidebranches also increases con-
tinuously.

In the present study, we focus on understanding the cell-
to-dendrite transition from the standpoint of the underlying
structure of time-independent steady-state growth solutions
without thermal noise. The role of noise in sidebranching
during directional solidification will be addressed in a sepa-
rate paper �42�. Therefore to avoid confusion and for brevity,
we refer hereafter in this paper to deep cells with blunt tips
as “fingers” and to dendrites with parabolic tips, albeit no
sidebranches in our present noiseless simulations, as
“needles.” This choice of terminology is rooted in the analy-
sis of two opposite limits of the steady-state growth problem,
which provides the context to interpret our results. In the
limit where the primary spacing is much smaller than the
solutal diffusion length, neighboring cells strongly interact
via the diffusion field. In this limit, the problem of direc-
tional solidification is closely related to the Saffman-Taylor
�ST� viscous fingering problem �43�. From this analogy, the
cell tip radius in this limit is expected to scale with the pri-
mary spacing. In the opposite limit, where the spacing is
much larger than the diffusion length, cells grow essentially
as isolated dendrites with a constant tip radius determined by
the local supersaturation and independent of primary spac-
ing. Whereas these two limiting cases have been recognized
and analyzed by several authors �17,19,21�, the precise range
of validity of these analogies and the nature of the crossover
between the two regimes have remained largely open.

Our results show that fingers and needles can belong to
different branches of steady-state growth solutions, as one
would expect for a discontinuous cell-to-dendrite transition,
or belong to the same branch of solutions with a continuous
shape evolution from finger to needle with increasing spac-
ing along that branch. Distinct branches are found over a
finite range of growth rates above vc, whereas a continuous
branch is found for larger velocities. Importantly, the range
of velocity where discontinuous branches exist depends sen-
sitively on the magnitude of crystalline anisotropy in all
growth geometries.

At a qualitative level, this finding is a natural consequence
of the fact that the tip radius of needles depends sensitively
on crystalline anisotropy, as understood from microscopic
solvability theory �for a review, see �44��, whereas the shape
of fingers is less dependent on anisotropy. At a quantitative
level, however, the branches of finger and needle growth
solutions merge into a single branch over a range of primary
spacing where neither of the two limits �ST and free den-
drite� are exact. Thus the details of the steady-state branch
solutions are not described analytically by either limit and, to
our knowledge, can only be accurately described in three
dimensions by the type of phase-field computations carried
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out here. Those simulations allow us to pinpoint more pre-
cisely inherent limitations of the ST analogy by characteriz-
ing the dependence of the maximum finger spacing with
growth rate.

The determination of the tip temperature has also been a
problem of central interest in directional solidification. This
temperature fixes the solute concentration in the tip region of
the growing crystal and hence the final microsegregation pat-
tern in the solid, which influences material properties. The
model developed by Bower, Brody, and Flemings �BBF� �45�
has been widely used in the metallurgical literature to inter-
pret experimental data. This model predicts that the tip un-
dercooling is determined by the growth rate and temperature
gradient but is independent of cell shape. The dependence on
cell shape has later been incorporated in a model developed
by Karma and Pelcé �KP� �17� by exploiting the mathemati-
cal analogy between directional solidification cells and ST
fingers. The latter model predicts a larger cell tip undercool-
ing than BBF, where the undercooling is defined as the dif-
ference between the liquidus temperature and the tip tem-
perature. The larger undercooling essentially accounts for
solute rejection by a growing finger of width smaller than the
primary spacing. Both the BBF and KP models are generally
assumed to predict the tip temperature of cells with primary
spacing smaller than the diffusion length.

Distinguishing experimentally the predictions of those
models is made difficult by the inherent error in tip tempera-
ture measurements, which are typically carried out using a
thermocouple or by measuring the cell tip position along the
temperature gradient with respect to a known reference tem-
perature. As a result, which model more accurately describes
the cell tip temperature in an experiment has remained some-
what uncertain despite some serious attempts to settle this
issue experimentally �12�. Since the present phase-field com-
putations give a very accurate prediction of the tip tempera-
ture, they are ideally suited to test the predictions of different
models. Here we find that the KP model gives a more accu-
rate prediction of the tip temperature, as expected from the
incorporation of solute rejection from a finite-width finger.

Since three-dimensional phase-field simulations are com-
puter intensive, the choice of which simulations to carry out
to gain maximum insight became important. Based on the
finding that various three-dimensional geometries yield strik-
ingly similar steady-state growth shapes and tip undercool-
ings, we used mainly axisymmetric simulations to perform a
systematic study of the transition between fingerlike and
needlelike shapes as a function of growth rate and primary
spacing. As a result, for clarity of exposition, we shall
present first our results for axisymmetric shapes to provide
an overall picture of our main findings. We then present re-
sults for fully three-dimensional shapes in thin-sample and
hexagonal-array geometries that more accurately describe
experiments.

The remainder of the paper is organized as follows. In
Sec. II, we review the sharp-interface and phase-field models
and describe our numerical procedures. Our results are then
presented and discussed in Sec. III and conclusions are pre-
sented in Sec. IV.

II. METHODS

A. Sharp-interface model

We consider a dilute binary alloy composed of a pure
material �A� containing impurities �B�, characterized by an
idealized phase diagram with straight liquidus and solidus
lines of slopes m and m /k, respectively, where k is the par-
tition coefficient. The molar concentrations of impurities on
the solid and liquid sides of the interface, cs and cl, satisfy
the partition relation

cs = kcl. �1�

We use the standard frozen temperature approximation, in
which the temperature field is given by the externally im-
posed thermal gradient, whereas the release of latent heat
during solidification is neglected. For a sample pulled along
the z axis with a speed vp and a thermal gradient of magni-
tude G directed along the same axis, the temperature field
T�z , t� is given by

T�z,t� = Ts + G�z − vpt� , �2�

where Ts is the solidus temperature corresponding to the
nominal sample composition c0. Furthermore, we neglect
convection in the liquid, such that solute transport is entirely
governed by diffusion. Since, typically, the diffusion of im-
purities in the liquid is several orders of magnitude larger
than in the solid, we neglect the latter �one-sided model�. The
condition of mass conservation at the interface then yields a
Stefan boundary condition

cl�1 − k�vn = − D�nc�l, �3�

where D is the diffusion coefficient in the liquid, �n denotes
the derivative normal to the interface, and the subscript l
indicates that the derivative is taken at the liquid side of the
interface.

We assume that the solid-liquid interface is in local ther-
modynamic equilibrium, as appropriate for atomically rough
interfaces and low growth rates. The interface temperature is
then given by the Gibbs-Thomson relation, which includes
the capillary shift induced by the surface tension. We con-
sider cubic materials and use the standard expression for the
surface tension

��n̂� = �̄a�n̂� , �4�

a�n̂� = �1 − 3���1 +
4�

1 − 3�
�nx

4 + ny
4 + nz

4�� , �5�

where �̄ is the average surface tension in a �100	 plane, n̂ is
the unit normal vector to the interface pointing into the liq-
uid, a�n̂� is the anisotropy function, � is the strength of the
fourfold anisotropy, and the coordinate system is aligned
with the crystallographic axes. In two dimensions, this aniso-
tropy function reduces to a���=1+� cos�4��, where � is the
angle between the normal direction to the interface and some
underlying crystalline axis �e.g., �100	 in a cubic crystal�.
With these notations, the interface temperature is given by
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T = Tm − �m�cl − � 

i=1,2

a�n̂� + �iia�n̂�
Ri

, �6�

where Tm is the melting temperature of the pure material,
�= �̄Tm /L is the Gibbs-Thomson coefficient with L being the
latent heat of fusion per unit volume, the Ri are the principal
radii of curvature of the interface, and �ii the second deriva-
tives along the associated principal directions.

In an alloy of nominal composition c0, the concentration
on the liquid side of a steady-state planar interface is cl

0

=c0 /k; we choose this as reference concentration. Eliminat-
ing the temperature between Eqs. �2� and �6�, we obtain the
standard free boundary problem for the one-sided model of
directional solidification

�tc = D�2c , �7�

cl�1 − k�vn = − D�nc�l, �8�

cl/cl
0 = 1 − �1 − k�d0 


i=1,2

a�n̂� + �iia�n̂�
Ri

− �1 − k��z − vpt�/lT,

�9�

where the capillarity length d0 is given by

d0 =
�

�T0
=

�̄Tm

L�m��1 − k�cl
0 , �10�

with �T0= �m��1−k�cl
0 being the freezing range and the ther-

mal length lT is defined as

lT =
�T0

G
=

�m��1 − k�cl
0

G
. �11�

The characteristic length scales of the problem are then d0,
lT, and the diffusion length

lD =
D

vp
. �12�

The multiscale character of the problem originates from the
fact that, for slow solidification, d0 is several orders of mag-
nitude smaller than the other two length scales.

In the axisymmetric approximation, we define the azi-
muthally averaged anisotropy function

ā��� = �
0

2� d�

2�
a��,�� , �13�

where � is the angle between the normal to the solid-liquid
interface and the growth axis and � is the azimuthal angle in
the plane perpendicular to the growth direction. Using Eq.
�5� with a�n̂� expressed in terms of � and �, we find

ā��� = �1 − 3���1 +
4�

1 − 3�
�cos4 � +

3

4
sin4 �� . �14�

Furthermore, for an axisymmetric shape independent of �,
the interface condition becomes �46�

cl/cl
0 = 1 − �1 − k�d0�A���

R1
+

B���
R2

� − �1 − k��z − vpt�/lT,

where A��� and B��� are defined by

A��� = ā��� +
d2ā���

d�2 , �15�

B��� = ā��� + cot �
dā���

d�
. �16�

In addition, the radii of curvatures are given by

1

R1
= −

d

dr
� z�

�1 + z�2�1/2� , �17�

1

R2
= −

z�

r�1 + z�2�1/2 . �18�

Here, z�r� parametrizes the axisymmetric growth shape in
cylindrical coordinates �r ,��, where r is the radial coordinate
of the interface in a plane perpendicular to the growth axis
and z��dz�r� /dr.

B. Phase-field model

The phase-field method has the well-known advantage to
avoid front tracking and has been extensively developed to
simulate solidification morphologies �for a review, see �47��.
Here we use a phase-field formulation designed to carry out
quantitative simulations of alloy solidification on experimen-
tally relevant length and time scales in the slow growth rate
limit where the solid-liquid interface can be assumed to be in
local thermodynamic equilibrium �36,37�. To be computa-
tionally tractable, such simulations generally require choos-
ing the width W of the spatially diffuse interface in the
phase-field model about one order of magnitude smaller than
the characteristic scale of the solidification pattern and thus
much larger than the real nanometer width of the solid-liquid
interface. This thick interface generates an anomalously large
solute trapping effect, which is canceled by the introduction
of a phenomenological “antitrapping current” �36,37�. The
quantitative accuracy of this method has been demonstrated
for both the isothermal �36� and the directional �37� solidifi-
cation of a dilute binary alloy. Since the equations for direc-
tional solidification have been presented and discussed in
detail in Ref. �37�, we will comment here only on some
points that are specific to the simulations of the present pa-
per.

C. Numerical implementation

For the full three-dimensional simulations, the equations
of motion of the phase-field model �Eqs. �68� and �69� of
Ref. �37�� are discretized on a simple-cubic lattice. For the
axisymmetric approximation, the interface boundary condi-
tion is handled automatically by solving the equations in
cylindrical coordinates with the azimuthally averaged sur-
face energy anisotropy given by Eq. �14� that only depends
on �, as described in the Appendix. The grid spacing for the
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finite difference discretization is fixed to �x=�y=�z
=0.8W on the cubic lattice and �r=�z=0.8W in cylindrical
coordinates. In order to minimize the anisotropy created by
the grid, a maximally isotropic discretization of the Laplace
operator involving first- and second-neighbor grid points is
used. It was shown in Ref. �37� that this offers a good com-
promise between accuracy and computational efficiency. The
equations are integrated in time using an explicit Euler
scheme.

Since, away from the interface, the concentration field
obeys the diffusion equation and the phase field is constant,
we use a simple adaptive meshing algorithm that coarsens
the mesh ahead of the interface, as briefly described in Ref.
�48�. As a result, most of the computation time is spent solv-
ing the phase-field equations in the region occupied by the
cellular array structure, whereas the long-range diffusion
field that extends ahead of this structure is treated with mini-
mal computational effort. This makes it possible to simulate
three-dimensional samples for experimental growth condi-
tions.

Simulations start from a single seed of solid that is placed
in the corner of the simulation box. It rapidly develops into a
cellular shape. The simulation box is periodically shifted and
the rear cut off in order to reduce simulation time; the box is
large enough to contain a portion of solid that is about two
cell spacings long. At the rear end of the box, we apply
no-flux boundary conditions for both the phase field and the
concentration field. Thus, we omit the dynamics of the
grooves as well as the flux of solute that comes from the root
of the grooves. We have checked by performing simulations
with varying cutoff length that this procedure does not sig-
nificantly alter the tip shape or the tip undercooling.

The values for the relevant materials parameters for the
SCN-salol system are listed in Table I. Unless specified oth-
erwise, the nominal sample concentration is c0=0.7 wt %
salol. The surface-tension anisotropy is the one estimated for
pure succinonitrile. To explore the role of anisotropy, we also
performed simulations with different anisotropy strengths
while keeping the other parameters unchanged.

An important point is the choice of the interface thickness
W introduced in the phase-field model. The precision of the
results increases when W decreases, but so does the compu-
tation time. It was shown in Ref. �37� that the outcome of the
simulations does not appreciably depend on W as long as it
remains about one order of magnitude smaller than any rel-
evant length scale of the problem. Usually, the smallest scale
to be taken into account is the tip radius. This implies that W
can be chosen much larger than the capillary length d0. We
have used the value W /d0=82 �W�1.25 	m�, which pro-
vides simulations that are converged to within a few percent

of the sharp-interface limit, both for the tip radius and the tip
undercooling. Different cell spacings were simulated by
keeping the interface thickness W fixed and by varying the
size of the simulation box.

The two most important quantities characterizing the ge-
ometry of a cell are the tip radius and the position of the tip
with respect to the isotherms �which is equivalent to the tip
temperature�. For the axisymmetric approximation, the tip
radius is unique, whereas a three-dimensional cell has two
radii of curvature which are in general distinct. Here, we
focus on the in-plane radius of curvature 
 �measured on a
cut along the sample plane�, since it is the only one that can
be determined with a good precision in experiments. To char-
acterize the tip position, we use the dimensionless tip under-
cooling � given by

� =
Tl − Ttip

Tl − Ts
=

Tl − Ttip

�m��1 − k�cl
0 = 1 −

ztip

lT
, �19�

where Ttip is the tip temperature, Tl and Ts are the liquidus
and solidus temperatures for the composition c0, respec-
tively, and ztip is the tip position with respect to the isotherm
of the solidus temperature Ts. Since Ts�Ttip�Tl, we have
0���1.

III. RESULTS AND DISCUSSION

A. Steady-state branches of finger and needle growth solutions

Let us start by discussing the results of axisymmetric
simulations. These simulations describe accurately the
growth of a single cell in a cylindrical tube. They are also a
good approximation for cells in an extended hexagonal array.
Indeed, for perfectly periodic hexagonal states, planes of
symmetry run along the grooves surrounding a cell. There-
fore, the steady-state solution for the full array can be ob-
tained by solving the problem for a single cell inside a hex-
agonal prism with reflection boundary conditions on the
sides, which is quite well approximated by the solution in-
side a cylinder. Since axisymmetric simulations are effec-
tively two-dimensional, they are much faster than the full
three-dimensional computations and allowed us to explore
efficiently a larger range of parameters.

We found two distinguishable types of cell shapes illus-
trated in Fig. 1. For small spacings, cells have a blunt tip,
whereas for large spacings, the tip becomes sharper and ac-
quires a parabolic shape. As mentioned in Sec. I, we refer to
these two types of steady-state growth solutions as fingers
and needles, respectively. We found that the existence of
these two types of solutions and the nature of the transition
between them, whether discontinuous or continuous, are in-
fluenced by two main factors: the pulling speed and the crys-
talline anisotropy. When the transition is discontinuous, fin-
gers and needles belong to different branches of steady-state
growth solutions. When it is continuous, fingers evolve pro-
gressively into needles with increasing spacing at fixed
growth rate and the distinction between fingers and needles
becomes blurred for intermediate spacings.

The influence of the pulling speed can best be visualized
by fixing the anisotropy and plotting the available steady-

TABLE I. Material parameters of the SCN-salol system.

Liquidus slope m �K/wt %� −0.68

Partition coefficient k 0.1

Impurity diffusivity �liquid� D �	m2 /s� 800

Gibbs-Thomson constant � �K 	m� 0.0644

Surface tension anisotropy � 0.007
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state spacings for different pulling speeds, as shown in Fig.
2. Three regimes can be distinguished, separated by vertical
dashed lines. In the low-velocity regime �I� only fingers �F�
form and no needles exist. In the intermediate-velocity re-
gime �II�, fingers and needles coexist �F&N� on separate
branches of steady-state growth solutions for small and large
spacings, respectively, separated by a “gap” in which no

steady-state growth was found. Finally, in the high-velocity
regime �III�, the two separate branches merge into a single
one, along which the shape changes continuously from fin-
gerlike to needlelike �F→N� with increasing spacing.

The existence of these three distinct growth regimes is in
reasonably good quantitative agreement with thin-sample di-
rectional solidification experiments carried out for the same
parameters �G=38 K /cm and c0=0.7 wt % salol� and dif-
ferent pulling velocities �15�. The sample thickness in those
experiments was comparable to the primary spacing. The
results can be meaningfully interpreted in the context of the
branch structure of Fig. 2 for axisymmetric steady-state
growth shapes because this structure turns out to be weakly
dependent on growth geometry as discussed further below.
The experimental results identified three growth regimes
with only cells for vp�8 	m /s, coexistence of cells and
dendrites for 8 	m /s�vp�20 	m /s, and only dendrites
for vp20 	m /s. Furthermore, dendritic arrays where ob-
served to grow with a larger spacing than cellular arrays over
the intermediate-velocity range where both structures coex-
ist. Even though the hysteretic character of the transition was
not investigated explicitly in those experiments, the branch
structure of Fig. 2 supports a scenario where the array spac-
ing makes discontinuous upward and downward jumps when
the growth velocity is cycled �i.e., increased and decreased in
small steps� over a range that crosses the boundary between
the low-velocity regime �I� where only cells exist and the
intermediate regime �II� where both cells and dendrites co-
exist. Note that this hysteresis cycle depends both on the
existence of a spacing gap in regime II and on the absence of
steady-state needle solutions below a critical velocity.

Curves of tip undercooling versus spacing for various val-
ues of the anisotropy are shown in Fig. 3 for vp=5
5.0 	m /s and vp=7.5 	m /s. These diagrams can be best
understood when considering the curves in the order of de-

-0.5 0 0.5
x/Λ

-2

-1.5

-1

-0.5

0

z/
Λ

Λ=167µm
Λ=59µm

FIG. 1. �Color online� Examples of steady-state cell shapes with
blunt and parabolic tips referred to for brevity in this article as
fingers �continuous line� and needles �dashed line�, respectively.
Parameters are G=38 K /cm, vp=5.0 	m /s, c0=0.7 wt %, and �
=0.015. The cell spacing is �=59 	m for the finger and �
=167 	m for the needle.

FIG. 2. Range of spacings for the existence of finger �F� and
needle �N� axisymmetric steady-state growth solutions as a function
of growth velocity vp for G=38 K /cm, c0=0.7 wt %, and �
=0.01. Three different growth regimes can be distinguished with
only fingers �F� for low velocity �regime I�, distinct branches of
finger and needle solutions �F&N� for intermediate velocities �re-
gime II�, and merging of these branches into a single branch with a
continuous shape evolution from finger to needle �F→N� with in-
creasing spacing �regime III�.
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FIG. 3. �Color online� Dimensionless tip undercooling � of axi-
symmetric finger and needle steady-state growth shapes vs cell
spacing for different anisotropy strengths. The parameters are G
=38 K /cm, c0=0.7 wt %, and vp=5.0 	m /s in �a� and vp

=7.5 	m /s in �b�. The limits of stability of finger and needle
branches are marked by a larger empty symbol surrounding a filled
symbol. The results show that increasing anisotropy strength ex-
tends the limits of existence of needles to lower growth rate.
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creasing anisotropy. For strong anisotropy, a continuous
branch of solutions extends from small to large spacings and
the tip undercooling decreases with increasing spacing �re-
gime III�. When the anisotropy is lowered, the curve of tip
undercooling versus spacing becomes nonmonotonous and
exhibits a maximum for intermediate cell spacings. The tran-
sition from fingerlike to needlelike shapes occurs over a nar-
row spacing range close to this maximum. For even lower
anisotropy, a “gap” opens, but both finger and needle solu-
tions still exist �regime II�. Finally, below a critical aniso-
tropy strength, the needle branch ceases to exist and only the
cell solution subsists �regime I�. When a gap exists, a tip-
splitting instability occurs at the upper end of the finger
branch and on both ends of the needle branch; on the latter, it
is sometimes preceded by oscillations. These limits are
marked in Fig. 3 by larger empty symbols surrounding filled
symbols. When there is no such symbol at the end of a curve,
we just stopped following the branch of steady-state growth
solutions for computational cost saving.

The combined results of Figs. 2 and 3 clearly show that
the transitions between the different regimes I, II, and III
depend both on growth velocity and anisotropy strength,
with the regimes II and III including needles extending to
lower velocity with increasing anisotropy strength.

In Fig. 4, we show the ratio of cell spacing � and tip
radius 
 for the same set of calculations as Fig. 3�a�. For low
spacings, this ratio is constant for all anisotropies, which
means that the tip radius scales with the cell spacing. In
contrast, for high spacings, � /
 is approximately propor-
tional to �, which simply means that the tip radius is con-
stant. These are indeed the behaviors expected for strongly
and weakly interacting cells, respectively. For high anisotro-
pies, the transition between these two regimes is surprisingly
sharp. When regime II �the opening of the gap� is ap-
proached, the crossover becomes more extended and in re-
gimes I and II, the scaling of 
 with � on the finger branch
is lost when the gap is approached. Note, however, that the
typical cell spacing at which the crossover occurs is indepen-
dent of the anisotropy strength. This is consistent with the
hypothesis that this crossover is governed by the ratio of cell
spacing and solutal diffusion length.

B. Tip undercooling

Next, let us discuss the comparison of our simulation data
to the available theories for the tip undercooling. Figure 5

shows a schematic representation of cellular fronts that high-
lights the relationship of the tip position and undercooling to
the form of the concentration profiles assumed in the BBF
and KP models. In both the BBF and KP models, the solute
concentration on the liquid side of the interface is assumed to
follow the liquidus and hence to vary linearly with z in the
presence of a linear temperature gradient. Furthermore, in
both models, the concentration field ahead of the solidifica-
tion front is taken to have the simple exponential form

c�z� = �ctip − c0�exp�− vpz/D� + c0, �20�

which neglects the lateral �x� variation of the concentration
field on the scale of the solutal diffusion length D /vp. In the
BBF model, the impurity flux determined by Eq. �20� at the
tip position, vp�ctip−c0�, is assumed to balance the flux
−G /m induced by the linear variation of concentration along
the interface. Using the fact that m�ctip−c0�=Ttip−Tl, where
Tl is the liquidus temperature, this flux balance condition
yields the well-known BBF relation Ttip=TL−GD /vp, or

�BBF =
D

vplT
, �21�

in terms of the dimensionless tip undercooling used in this
paper. This flux balance also implies that the slope of the
concentration profile in the BBF model is continuous when
traversing the tip region, as illustrated by the thick dashed
line in Fig. 5. The KP model differs from the BBF model in
that it also takes into account the impurity flux generated by
the moving interface through the modified tip flux balance
condition �17�

− D
dc

dz
= fsc0�1 − k�vp − �1 − fs�D

G

m
, �22�

where fs is the solid fraction in a region behind the tip where
the finger width can be assumed constant. This expression
yields the prediction for the tip undercooling
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FIG. 4. �Color online� Ratio of cell spacing � and tip radius 
 of
axisymmetric growth shapes for G=38 K /cm, c0=0.7 wt %, vp

=5.0 	m /s, and different anisotropy strengths. This ratio is con-
stant for finger shapes that scale with the cell spacing and increases
linearly with � for needles that have a constant 
 at fixed vp.

FIG. 5. Schematic representation of cellular fronts and corre-
sponding tip temperatures and concentration profiles along the
growth direction for the BBF model �dashed lines� and Karma-
Pelcé model �solid lines�.
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�KP =

fsk + �1 − fs�
D

vplT

1 − fs�1 − k�
, �23�

which reduces to the BBF expression in the limit where fs
vanishes. For finite fs, however, it predicts a larger under-
cooling ��KP�BBF� that is necessary to accommodate the
solute rejection of the moving tip as illustrated in Fig. 5
where the concentration profile �thick solid line� has a dis-
continuous slope at the tip. Furthermore, this undercooling
approaches unity in the limit fs=1 corresponding to planar
interface growth.

Equation �23� generally needs to be supplemented by an
expression for fs to predict the tip undercooling. In two di-
mensions �2D�, KP exploited the mathematical analogy be-
tween directional solidification and the ST viscous fingering
problem �43� to obtain an expression for fs that is simply
equal in this case to the relative finger width �, defined as the
ratio of the cell width to the primary spacing. In three dimen-
sions �3D�, the same analogy holds in the limit �vp /D�1.
Even though there is no known analytical solution in 3D, the
form

z

�
=

�2

�2

�



log�cos

�r

��
 �24�

was found by Levine and Tu �49� to provide a good fit to
numerically computed axisymmetric ST shapes with relative
finger width � �defined as the ratio of the cell width to the
tube diameter�. This form also fits well here the tip region of

axisymmetric solidification fingers, as found previously �50�
and illustrated in Fig. 6, and those fits where used to compute
fs=�2 for different finger shapes. To test the BBF and KP
theories, we fixed vp and G and extracted finger shapes and
tip undercoolings from phase-field simulations for different
spacings �. We studied several compositions in order to vary
the freezing range. The theoretical predictions for the tip
undercooling are compared to the phase-field results in Fig.
7. For each composition, the undercooling displayed in the
figure corresponds to the largest stable spacing of the finger
branch �the corresponding spacings are given in Fig. 8 be-
low�. Since, for fixed composition, vp, and G the tip under-
cooling is only weakly dependent on primary spacing, the
undercooling corresponding to the maximum spacing of the
finger branch is representative of other spacings. It can be
clearly seen that the KP prediction is much closer to the
simulation data than the BBF model.
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FIG. 6. �Color online� Axisymmetric growth shapes for different
concentrations of salol for vp=5 5.0 	m /s, G=38 K /cm, and �
=0.007. For each concentration, the shape shown corresponds to the
finger solution with the largest spacing. The spacings are given in
Fig. 8 below.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

c
0
(wt%-Salol)

0.1

0.2

0.3

0.4

T
ip

un
de

rc
oo

lin
g
D

Phase-field
KP
BBF

FIG. 7. �Color online� Variation of dimensionless cell tip under-
cooling with salol concentration computed from phase-field simu-
lations and predicted by the BBF and KP models for vp=5
5.0 	m /s, G=38 K /cm, and �=0.007. The values of � that are
needed for the KP prediction are obtained from fits of the cell tip to
the Saffman-Taylor shape.
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FIG. 8. �Color online� Variation of maximum finger spacing and
critical value of the dimensionless surface-tension parameter at this
spacing, �c, with concentration for vp=5 5.0 	m /s, G=38 K /cm,
and �=0.007.

GUREVICH et al. PHYSICAL REVIEW E 81, 011603 �2010�

011603-8



C. Maximum finger spacing

The steady-state branch of fingers terminates at a maxi-
mum spacing for velocities smaller than the velocity at
which the finger and needle branches merge to form a single
continuous branch �regimes I and II in Fig. 2�. Levine and Tu
�49� found numerically that steady-state axisymmetric ST
finger solutions only exist above a minimum value of a di-
mensionless surface-tension parameter. When mapping di-
rectional solidification to the ST problem in the limit
vp� /D�1, this surface-tension parameter can be defined as

� =
d0D

�2vp� 1 − fs�1 − k�

k + �fs�1 − k� − 1�
D

vplT
� . �25�

Thus, for fixed control parameters G and vp, the existence of
a minimum value of �, defined here by �c, would imply the
existence of a maximum solidification finger spacing �max,
implicitly defined by

�c =
d0D

�max
2 vp� 1 − fs�1 − k�

k + �fs�1 − k� − 1�
D

vplT
� , �26�

if the analogy between ST and solidification fingers holds. To
test validity of this analogy, we plot together in Fig. 8 the
maximum cell spacing �max and �c values computed with
Eq. �26� for fixed vp and G and the same compositions as in
Fig. 7. The maximum spacing is found to only vary by about
10% over this wide range of compositions while �c de-
creases by a factor of roughly 3. This decrease is mainly due
to the fact that the chemical capillary length d0 defined by
Eq. �10� is inversely proportional to the alloy composition c0,
which itself varies by a factor of 3 in this plot. The variations
of �c due to the dependence of fs and lT on the composition
are much smaller. If the analogy between ST and solidifica-
tion fingers were to be valid �Eq. �26� were to hold�, �max
should decrease by a factor of 1 /�3 over this range of com-
position because d0 decreases by a factor of 3 and �c is
constant in this analogy. The fact that, instead, �max de-
creases by only 10% and �c decreases by a factor of 3 in Fig.
8 shows unequivocally that the maximum spacing is not pre-
dicted by the analogy between solidification and ST fingers.
We note that the minimum value �c for the existence of ST
fingers found by Levine and Tu was determined for an iso-
tropic surface tension, whereas the present simulations in-
clude anisotropy. However, since the maximum finger spac-
ing does not depend sensitively on anisotropy strength for
small anisotropy in our simulations �Fig. 3�, inclusion of a
weak anisotropy in the ST problem is not likely to resolve
this discrepancy.

More insights concerning the maximum finger spacing
can be gained by considering its dependence on the pulling
speed. In Fig. 9, we plot the square of the maximum finger
spacings found in the simulations of Fig. 2 versus the inverse
of the pulling speed, 1 /vp. The result is well fitted by a
straight line going through the origin �dashed line�. This
means that �2vp is roughly constant. Even though the tip
radius is not strictly proportional to � close to the maximum

finger spacing, one can still infer from this finding that 
2vp
is roughly constant. We are thus faced with the somewhat
surprising conclusion that, whereas the shapes of the fingers
are well fitted by the ST form, the 1 /�vp dependence of the
maximum finger spacing on growth rate is characteristic of
dendrites.

A possible interpretation of these findings can be obtained
by a finer analysis of the ST analogy, taking into account
results on another related and well-known problem, namely,
the growth of a crystalline finger in a channel �51,52�. For-
mally, the only difference between these two problems is that
the Laplace equation of the ST problem is replaced by the
diffusion equation for crystal growth. One might naively ex-
pect that for slow growth, the diffusion equation tends to the
Laplace equation and that the two problems are perfectly
equivalent. However, previous analyses �51,52� show that
while there is indeed a branch of solutions for the crystal-
growth problem that maps onto the ST solutions, there is a
second, “diffusive” branch of solutions, which always grows
faster than the ST solutions. The shape of these fingers is still
well described by the ST shape, but the relation between
undercooling and growth speed is entirely different. Our
findings suggest that the same is true in three dimensions:
whereas the 3D ST shape found by Levine and Tu closely
describes the axisymmetric solidification fingers in our simu-
lations, which justifies the use of this shape for computing
the tip undercooling using the KP theory as we have done
here, those fingers belong to a faster growing branch of
steady-state growth solutions that are distinct from the 3D
ST branch. This plausible scenario provides a natural expla-
nation for why the ST analogy fails to predict the maximum
finger spacing.

D. Full three-dimensional simulations

Let us now turn to the results of full three-dimensional
simulations. Even with a powerful model and a multiscale
implementation, three-dimensional simulations of extended
cellular arrays for realistic materials parameters remain com-
putationally challenging. Therefore, we restrict our attention
to perfectly periodic arrays; furthermore, we only consider
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FIG. 9. �Color online� Square of the maximum finger spacing vs
inverse pulling speed, 1 /vp, for the same data shown in Fig. 2 �G
=38 K /cm, �=0.01�. It is well fitted by a straight line going
through the origin �dashed line�.
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samples in which one crystallographic axis is aligned with
the temperature gradient and another one with the sample
plane, such that the third one is normal to the sample walls.
This makes it possible to exploit the symmetries of the pat-
tern to reduce computation time, as illustrated in Fig. 10. In
a thin sample with a single row of cells, the midplane be-
tween the two plates and the midplane between two cells are
planes of mirror symmetry along the x and y directions, re-
spectively. Therefore, simulations conducted in a box of size
� /2 along x and � /2 along y with reflection boundary con-
ditions on the lateral sides, and with a quarter of a cell placed
in one corner, are equivalent to simulations of the full peri-
odic array. Note that the reflection boundary condition for the
phase field on the side that corresponds to the sample wall is
equivalent to imposing a contact angle of 90° between the
solid-liquid interface and the sample walls. Other contact
angles could be easily simulated by modifying this boundary
condition �30�, but �i� there is at present no reliable informa-
tion about the real value of this contact angle in experiments
and �ii� for well-developed three-dimensional cells or den-
drites, the interface comes into contact with the sample walls
only far behind the tip and therefore this boundary condition
has no influence on tip shape or undercooling.

For comparison, we have also performed simulations for
perfectly periodic three-dimensional hexagonal arrays. As
shown in Fig. 11, in this case we can take advantage of the
two orthogonal mirror-symmetry planes that run across the
center of each cell and the center of symmetry that is present
exactly half way between two cell centers. In order to obtain
a perfectly hexagonal array, the aspect ratio of the box sizes
along x and y should be �3 /2. On a uniform cubic grid, this
irrational aspect ratio cannot be achieved exactly; we chose
the closest possible rational approximation for the box size.
As will become clear below, this approximation does not
have any significant influence on our simulation results.

E. Influence of geometry

Examples of steady-state cell shapes calculated in three
dimensions in hexagonal and thin-sample geometries are
shown in Fig. 12. In the thin-sample geometry, when the
sample thickness � is smaller than some threshold �min
�which for this set of parameters is between 22 and 33 	m�,
the cell shape adopts a bidimensional “ribbon” form.

In Fig. 13 we show the cell shapes, scaled with the cell
spacing, for identical simulation parameters but different ge-
ometries. For the thin-sample and hexagonal geometries, the
plotted shape is a cut through the center of the cell. Since the
three-dimensional cell shapes are always convex, this would
also correspond to the “projected shape” that can be directly
observed in thin-sample experiments. The scaled cell shapes
in hexagonal, thin-sample, and axisymmetric geometries are
all close to each other and to the scaled shape obtained from
experimental data. In contrast, they are markedly different
from the ribbon state which, as expected, almost coincides
with the two-dimensional solution.

Figure 14 presents the tip undercooling of steady-state
cells as a function of cell spacing in the different geometries
explored. The tip undercooling for bidimensional steady
states is systematically larger than for the corresponding
three-dimensional geometries. Among the three-dimensional
geometries, there are no major discrepancies. The difference

FIG. 10. Sketch of the reflection symmetry in the thin-sample
geometry for cubic crystal symmetry with one crystallographic axis
aligned with the temperature gradient and the arrow pointing along
the growth direction.

FIG. 11. Top view sketch showing the boundary conditions that
create a hexagonal arrangement from a quarter of a cell �in the
shadowed domain�. Nonflux boundaries are imposed on all bound-
aries of the computational domain �thick solid lines� except the
upper boundary where a point symmetry with respect to the center
point A �marked with a cross� is imposed.

(a) (b) (c)

FIG. 12. �Color online� Steady-state cell shapes for G
=38 K /cm, c0=0.7 wt %, and vp=5 	m /s for a hexagonal array
with �a� cell spacing �=95 	m, and in a thin-sample geometry
with cell spacing �=95 	m, for a sample thickness of �b� �
=33 	m and a sample thickness of �c� �=22 	m.

GUREVICH et al. PHYSICAL REVIEW E 81, 011603 �2010�

011603-10



between the axisymmetric solution and the two genuinely
three-dimensional states is larger than the one between the
latter.

In agreement with a previous study �50�, we found that
the dimensionality strongly affects quantitatively the finger
and needle branch structure: whereas all the three-
dimensional geometries exhibit only finger solutions up to a
maximum spacing that is almost independent of the geom-
etry �corresponding to regime I in Fig. 2�, two-dimensional
solutions and ribbon states exist beyond this limit and con-
tinuously connect to the dendrite solutions �corresponding to
regime III in Fig. 2�. Dimensionality, however, does not af-
fect qualitatively the branch structure. A similar branch struc-
ture with the same dependencies on pulling speed and aniso-
tropy was found previously for bidimensional steady-states
of the symmetric model of directional solidification �equal
diffusivity of impurities in the solid and liquid� �53�.

Concerning the nature of the cell-to-dendrite transition,
the same branch structure as for the axisymmetric states is
found in the thin-sample geometry, as shown in Fig. 15.
Since these simulations take much longer than the axisym-
metric ones, we repeated only the runs that are most critical
for revealing the structure of the diagram. In particular, it can
be seen that the opening of the gap and the disappearance of
the dendrite branch occur at about the same anisotropies in
both cases and that the values of the critical spacings limiting
the gap are very similar. The most visible difference between
axisymmetric and thin-sample solutions concerns the low-
anisotropy limit of the needle branch: whereas needle solu-
tions are already present for vp=5 6.0 	m /s and �=1% in
thin samples, they appear only at slightly higher pulling

speed �or anisotropy� in the axisymmetric case. It should be
mentioned that both in the axisymmetric and in the thin-
sample geometries, these low-anisotropy needle states were
difficult to reach: simulations had to be started with a steady-
state solution at higher anisotropy as an initial condition.
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FIG. 14. �Color online� Tip undercooling of steady-state cells as
a function of cell spacing in different geometries �These results are
a direct comparison to Ref. �50�. Thus, for these simulations, we
have used the value of the partition coefficient k=0.16 of Ref. �50�
rather than the value k=0.1 of Table I used in all the other simula-
tions. However, this does not change the qualitative aspects of our
results as far as the dependence of the tip undercooling on the
sample geometry is concerned.� with G=38 K /cm and vp

=5.0 	m /s. The thin-sample geometry is characterized by the cell
thickness �, and we include the case when the steady-state shape
corresponds to a “ribbon” equivalent to the bidimensional case ��
=22 	m�. The limits beyond which we did not find steady-states
are marked by a larger empty symbol surrounding a filled symbol.

50 100 150 200
Cell spacing Λ (µm)

0.16

0.18

0.2

0.22

T
ip

un
de

rc
oo

lin
g

∆

ε=1.0%
ε=1.2%
ε=1.5%
ε=3.0%

50 100 150 200
Cell spacing Λ (µm)

2

3

4

5

6

7

Λ
/ρ

ε=1.0%
ε=1.2%
ε=1.5%
ε=3.0%

(b)

(a)

FIG. 15. �Color online� Tip undercooling and tip radius for thin-
sample steady states, with thickness �=50 	m, obtained for G
=38 K /cm, c0=0.7 wt %, and a pulling speed of vp=5.0 	m /s.
The limits beyond which we did not find steady states are marked
by a larger empty symbol surrounding a filled symbol; otherwise,
we just stopped following the solution branches. In particular, finger
growth shapes would of course exist for smaller spacing for �
=3%, but we have not calculated them here.
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FIG. 13. �Color online� Scaled steady-state scaled cell shapes
�G=38 K /cm, c0=0.7 wt %, and vp=5.0 	m /s�, with cell spac-
ing of �=96 	m for the bidimensional case, �=95 	m for the
thin-sample and hexagonal geometries, and �=92 	m for the axi-
symmetric case. The shape is compared to experimental data ob-
tained from the analysis of a steady-state shape with G
=50 K /cm, vp=5.0 	m /s, and �=106 	m.
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F. Instabilities and symmetries

Beyond the maximum steady-state spacing on the cellular
branch, a tip-splitting instability occurs, the details of which
depend on the geometry, as shown in Figs. 16 and 17. As can
be appreciated from the latter figure, in the hexagonal case,
the tip-splitting instability can involve a change of symmetry
of the pattern. In the axisymmetric geometry, the instability
proceeds via the appearance of a central dip in the cell tip,
which has no other choice but to stay circular. It should also
be noted that, whereas the tip splitting is sometimes preceded
by oscillations on the needle branch in the axisymmetric
simulations, such oscillations are never found in the other
geometries, where the instability is just a standard �steady�
tip splitting.

We did not carry out a detailed investigation of these in-
stabilities since our simulations can only yield a partial view
due to the influence of our specific boundary conditions. For
the thin sample, our simulation box contains only a quarter
of a cell, but we can capture the tip-splitting instability since
it is a symmetric mode. In contrast, we cannot capture asym-
metric modes which would lead to tilted or parity-broken
cells. Therefore, we cannot exclude that such states could

exist for spacings that fall inside the “gap” reported here.
Moreover, we cannot capture instabilities that involve more
than one cell, such as the well-known cell elimination and
oscillatory instabilities �22,29�. Therefore, the steady states
found here might not all be observable in experiments. The
arrays of different symmetries formed after the tip-splitting
instability in Figs. 16 and 17 are stable in our simulations,
but might be unstable in extended systems �we recall that the
pictures are reconstructions which contain several copies of
our actual simulation box�. Finally, in the presence of noise,
it is also expected that an instability by tertiary branching
would become important for large spacings.

IV. CONCLUSIONS

We have used a computationally efficient quantitative
phase-field approach to investigate three-dimensional peri-
odic array structures formed during the directional solidifi-
cation of a dilute binary alloy, focusing primarily on the
dependence of steady-state growth shapes on growth rate,
surface-tension anisotropy strength, and sample geometry.
Furthermore, we have used our results to critically assess the
quantitative predictions of existing theories for growth
shapes and the tip undercooling.

We find consistently three regimes with only a finger
branch of steady-state growth solutions at low velocity, sepa-
rate branches of fingers and needles at intermediate velocity,
and merging of those two branches into a single finger or
needle branch for large velocity. Along the latter branch, the
interface shape evolves continuously from finger to needle
with increasing spacing. In contrast, in the intermediate-
velocity range, fingers and needles exist on separate branches
of steady-state growth solutions for small and large spacings,
respectively. This intermediate-velocity regime agrees rea-
sonably well quantitatively with the experimentally observed
velocity regime where cells and dendrites coexist in the
SCN-salol system for the same composition �c0=0.7 wt %
salol� �15�.

The existence of those separate branches of fingers and
needles provides a potential explanation of the characteristic
jump of primary spacing observed in experiments �3,4,15� in
the vicinity of the cell-to-dendrite transition �i.e., the finger-
to-needle transition where needles possess sidebranches�. It
also accounts for the hysteretic character of this transition as
a function of growth rate. In some experiments �9�, however,
the cell-to-dendrite transition has been observed to be con-
tinuous as a function of spacing. Our results suggest that
those experiments were carried out in a velocity regime
where the finger and needle branches have merged into a
single branch. It should be noted that other explanations for
the discontinuity in spacing have been suggested, such as a
decisive role of confinement when the sample thickness be-
comes comparable to the cell spacing �7� or a sudden onset
of the cell elimination instability for a large range of spac-
ings with a small change in velocity �14�. Whereas our re-
sults indicate that a direct influence of the sample thickness
on the transition is highly unlikely, the precise relation be-
tween the sample geometry and the cell elimination instabil-
ity could only be investigated in simulations with several

FIG. 16. �Color online� Sequence showing a tip-splitting insta-
bility in thin-sample geometry with thickness �=50 	m and initial
cell spacing �=110 	m and in an initially hexagonal array with
initial cell spacing �=110 	m, in both G=38 K /cm and vp

=5.0 	m /s.

(a)

(b) (c)

FIG. 17. �Color online� Tip splitting can involve a change of
symmetry. An initially �a� hexagonal array can tip split into a �b�
square symmetry or a �c� honeycomb symmetry depending on the
initial wavelength. G=38 K /cm and vp=5.0 	m /s.
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cells �29�, which is outside the scope of the present paper.
Finally, the results of a detailed study of sidebranching in-
cluding thermal noise, which sheds additional light on the
cell-to-dendrite transition, will be published elsewhere �42�.

We have found that the “branch structure” characterized
by those three growth regimes is robust. Increasing the an-
isotropy strength shifts the appearance of the needle branch
and its merging with the finger branch to lower velocities,
but does not alter qualitatively this structure. Furthermore,
interestingly, this branch structure is both qualitatively and
quantitatively very similar in different three-dimensional
growth geometries. Since an axisymmetric cell approximates
an individual cell in a spatially extended hexagonal array, the
near coincidence of branch structures, shapes, and tip under-
coolings for the axisymmetric and hexagonal-array geom-
etries is not unexpected. The near coincidence of branch
structures, shapes, and tip undercoolings for those geom-
etries and the thin-sample geometry, however, is more sur-
prising and important in itself. It implies that computations
and experiments carried out in a thin-sample geometry can
be used to extract quantitative information about steady-state
growth structures that would form in a spatially extended
array structure in a bulk sample. The stability property of
those structures, however, can generally depend on the
growth geometry. The hexagonal-array structures are gener-
ally less constrained than the thin-sample array structures
and can therefore exhibit a wider range of instabilities. Some
tip-splitting modes were illustrated at the end of the last sec-
tion, but were not systematically surveyed here.

We have used our results to critically assess the quantita-
tive validity of the analogy between ST and solidification
fingers. We find that an approximate analytical expression
used to fit three-dimensional axisymmetric ST shapes �49�
also fits well the finger shapes in our phase-field simulations.
This analogy, however, cannot be used to predict the maxi-
mum finger spacing most likely due to the fact that solidifi-
cation fingers exist on a different “diffusive” branch of
growth solutions than the ST branch. This conclusion is
based on previous theoretical work for bidimensional iso-
thermal finger growth in a channel �51,52�. While a theoret-
ical attempt has been made to extend this work to bidimen-
sional directional solidification �21�, an analytical
understanding of the branch structure for directional solidifi-
cation in three dimensions remains lacking.

We have also used our results to critically assess existing
theories of the finger tip undercooling. We conclude that the
KP theory yields more accurate predictions of the tip under-
cooling than the BBF theory because it accounts for solute
rejection in the tip region. The KP theory, however, requires
as input parameter the relative finger width that was ex-
tracted here from a fit of phase-field shapes to ST shapes. It
should in principle be possible to use the same fit procedure
experimentally, but an accurate measurement of the tip tem-
perature to distinguish these theories remains a technical
challenge.

We have performed our calculations for a particular set of
materials parameters and ranges of control parameters moti-
vated by the availability of experimental data �15�. While
this has allowed us to understand quantitatively the influence
of anisotropy and pulling speed on steady-state growth

shapes, a more exhaustive survey as a function of the various
parameters �d0 / lT, lD / lT, � / lT, k, and �� of this problem re-
mains to be carried out. Even with the efficient phase-field
model used here, such a survey remains a nontrivial compu-
tational challenge.
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APPENDIX: ANISOTROPY IN THE AXISYMMETRIC
PHASE-FIELD MODEL

Here, we show that the Gibbs-Thomson condition in the
axisymmetric approximation, Eq. �15�, can be simply ob-
tained by simulating a phase-field model with the azimuth-
ally averaged anisotropic surface tension given by Eq. �14�
in cylindrical coordinates. Rather than giving a complete
asymptotic analysis, we will outline here only the points that
differ from the standard approach; the details can be worked
out in a straightforward manner following the lines of previ-
ous works �37,54�. Furthermore, for simplicity, we will only
consider the case of isothermal solidification.

The starting point is a dimensionless free-energy func-
tional

F = �
V

f��,�� �,U� , �A1�

where � is the phase field �with �=1 and �=−1 correspond-
ing to the solid and the liquid, respectively�, U is a dimen-
sionless driving force �proportional to the supersaturation in
the liquid�, and the integral is over the full three-dimensional
space. The free-energy density is of the form

f��,�� �,U� =
1

2
W2�n̂��� �2 + fdw��� + �Ug��� , �A2�

where W�n̂�=W0a�n̂�, with W0 the �average� interface thick-
ness and a�n̂� the anisotropy function defined in Eq. �5�.
Furthermore, fdw=−�2 /2+�4 /4, g���=�−2�3 /3+�5 /5,
and � are the standard double-well potential, tilting function,
and coupling constant used in Refs. �37,54�.

To simulate this model in the axisymmetric approxima-
tion, we use the standard cylindrical coordinates, �x ,y ,z�
= �r cos � ,r sin � ,z�, and suppose that � and U are indepen-
dent of �. Furthermore, W�n̂� is replaced by its azimuthal
average, W���=W0ā���. Here, � is the angle between the unit
vector perpendicular to the interface pointing into the liquid
and the growth axis z given by

� = arctan
�r�

�z�
. �A3�

Since f is independent of the azimuthal angle, the integral
over � can be carried out and the free-energy becomes
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F =� 2�rf��,�� �,U�drdz , �A4�

where � and U are now functions of r and z only. Simula-
tions are performed on a two-dimensional regular grid in
these variables, which represents a radial slice of the axisym-
metric system. The time evolution of the phase field is, as
usual, given by the functional derivative of the free-energy
functional. In carrying out this derivative, it has to be taken
into account that the functional derivative of F with respect
to ��r ,z , t� represents the variation of the free energy with
the change of � on an entire circle of radius r; therefore, the
rate of change of a grid point located in the simulation slice
is given by

�����t��r,z,t� = −
1

2�r

�F
���r,z,t�

= −
1

2�r
�2�r

� f

��
− �z�2�r

� f

���z���
− �r�2�r

� f

���r���� , �A5�

where ���� is the �orientation-dependent� relaxation time of
the phase field. It can be seen that the factors 2�r cancel out
from the first two terms, which become thus identical to the
ones that would have been obtained in a standard Cartesian
coordinate system. Furthermore, the last term gives rise to
two contributions. When the partial derivative �r acts on the
derivative of f , the factors 2�r again cancel out. Together
with the first two terms, this contribution constitutes an ex-
pression which is identical to the functional derivative of an
anisotropic free energy in two dimensions. This results, in
the sharp-interface limit, in the term proportional to A��� in

Eq. �14�; indeed, ā+d2ā /d�2 and R1 are just the stiffness and
radius of curvature in the �r ,z� plane, respectively. The only
contribution that is specific to the axisymmetric situation is
therefore the terms that result from the action of �r on r
itself. These new terms are

1

r

� f

���r��
=

W0
2ā

r
�ā�r� +

dā

d�

��

���r��� . �A6�

Equation �A3� yields �� /���r��=cot ��r�. Furthermore, in
the limit where the radii of curvature are much larger than
the interface thickness, we can consider that � varies only
weakly across the diffuse interface and is approximately
given by tan �=−z��r�, where z�r� is the interface shape in
the sharp-interface representation. Then, �r�=sin ��n�=
−z� /�1+z�2�n�, where �n� is the derivative along the inter-
face normal. In this limit, the additional terms become hence

1

r

� f

���r��
=

W0
2ā

R2
�ā + cot �

dā

d�
��n� , �A7�

with R2 given by Eq. �18�. Up to the factor in large brackets,
this is of the same form as the standard curvature correction
in an isotropic phase-field model. Therefore, it is straightfor-
ward to show that, in the sharp-interface limit, this contribu-
tion yields the terms proportional to B��� in Eq. �14�.

The analysis of the kinetic effects is not modified by the
change of coordinates; therefore, local equilibrium at the in-
terfaces can be obtained, as in Ref. �54�, by appropriately
choosing �����a���2. Equation �A5� is then simulated to-
gether with the evolution equation for U, in which the diver-
gence operators are replaced by the appropriate expression in
cylindrical coordinates. Note that there is no singularity for
r→0 since r=0 is a symmetry axis and hence we impose
vanishing derivatives of all fields in r=0.
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